
www.umbc.edu

CMSC202
 Computer Science II for Majors

Lecture 13 –

Friends and More

Dr. Katherine Gibson

www.umbc.edu

Last Class We Covered

• Linked Lists

– Traversal

– Creation

– Insertion

– Deletion

2

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To cover some miscellaneous topics:

– Friends

– Destructors

• Freeing memory in a structure

– Copy Constructors

– Assignment Operators

4

www.umbc.edu

Friend Functions and Classes

www.umbc.edu

Why Have Friends?

• Giving direct access to private variables is not
possible if the function is not a class method

• But using accessors can be cumbersome,
especially for something like an overloaded
insertion operator (<<)

• Use a “friend” function to give direct access,
even though the function is not called on an
object of that class

 6

www.umbc.edu

Friend Functions

• Non-member functions that have
member-style access

• Function is declared inside the class

– Will be public regardless of specifier

• Designate using the friend keyword
friend void aFriendFunction();

7

www.umbc.edu

Friend Classes

• Classes can also be declared to be friends of
another class

class Milo {

public:

 friend class Otis;

};

class Otis { ... };

8

the Otis class now
has access to all of
the private members
of the Milo class

www.umbc.edu

Forward Declarations

• When one class references another in its
definition, we need a forward declaration

– Tell the compiler it exists, without defining it

• In order to reference the Otis class before
it’s defined, we need something similar:

class Otis;

– before the Milo class declaration

9

www.umbc.edu

Using Friends

• Why give access to private member variables?

• Useful for testing functionality

• Increased speed

• Operator overloading

• Enhances encapsulation

– A function being a friend is specified in the class

10

www.umbc.edu

Destructors

www.umbc.edu

Destructors

• Destructors are the opposite of constructors

• Used when delete() is called on an
instance of a user-created class

• Compiler automatically provides one for you

– Does not take into account dynamic memory

– If your class uses dynamic memory, you must write
a better destructor to prevent memory leaks!

12

www.umbc.edu

Destructor Example: Date

• Let’s say we have a new member variable of
our Date class called ‘m_next_holiday’

– Pointer to a string with name of the next holiday

class Date {

private:

 int m_month;

 int m_day;

 int m_year;

 string *m_next_holiday ;

};

13

www.umbc.edu

Destructor Example: Date

• We will need to update the constructor

Date::Date (int m, int d, int y,

 string next_holiday) {

 SetMonth(m);

 SetDay(d);

 SetYear(y);

 m_next_holiday = new string;

 *m_next_holiday = next_holiday;

}

14

What other changes do we need to
make to a class when adding a new
member variable?

www.umbc.edu

Creating a Destructor

• We also now need to create a destructor of
our own:

~Date(); // our destructor

• Destructors must have a tilde at the front

• Similar to a constructor:

– Destructor has no return type

– Same name as the class

15

www.umbc.edu

Basic Destructor Definition

• The destructor needs to free all of the
dynamically allocated memory

– Otherwise we will have memory leaks

• Most basic version of a destructor

Date::~Date() {

 delete m_next_holiday;

}

16

www.umbc.edu

Security and Carefulness

Date::~Date() {

 delete m_next_holiday;

}

• This works, but it isn’t very secure for the data,
and it isn’t very careful with our pointers

– What if someone gets access to this memory later?

– What if my code tries to access m_next_holiday
after it’s been deleted?

17

www.umbc.edu

Ideal Destructor Definition

• Clears all information and sets pointers to NULL

Date::~Date() {

 // clear member variable info

 m_day = m_month = m_year = 0;

 *m_next_holiday = "";

 // free and set pointers to NULL

 delete m_next_holiday;

 m_next_holiday = NULL;

}

 18

Why aren’t we
using the mutator

functions here?

www.umbc.edu

Freeing Memory

• Done using the delete() function

– Takes a pointer as an argument:

 delete(grades);

 delete(letters);

• delete() does not work recursively

– For each individual allocation, there must be an
individual call to free that allocated memory

– Called in a sensible order

19

www.umbc.edu

Freeing in Order

In what order would you free the
nodes of this linked list?

20

A B C D E

www.umbc.edu

Freeing in Order

In what order would you free the
nodes of this binary tree?

21

A

C B

D F E

H G

www.umbc.edu

Copy Constructors and
Assignment Operators

www.umbc.edu

Copying Objects…

• When does C++ make copies of objects?

– Pass by value

– Return by value

– Assignment

– and…

– New object initialized from existing object

www.umbc.edu

Copy Constructor

• Initialize an object based on an existing object

• Examples:
int a = 7;

int b(a); // Copy constructor

Shoe shoeOfMJ(“Nike”, 16);

Shoe myShoe(shoeOfMJ); // Copy

www.umbc.edu

Copy Constructor

• Use when dynamic memory is allocated

• Syntax:

– Prototype:
ClassName(const ClassName& obj);

– Implementation:
ClassName::ClassName(const ClassName& obj)

{

// code to dynamically allocate data

}

www.umbc.edu

Why do we care?

• Remember

– Assignment (by default) makes a direct copy of
data members…

– With dynamic memory – this would be copying
pointers

Class

int *data1

string *data2

Object *data3

7

abc

Foo

bar

Class

int *data1

string *data2

Object *data3

www.umbc.edu

What do we want?

• Each object should have own memory
allocated to members…

Class

int *data1

string *data2

Object *data3

7

abc

Foo

bar

Class

int *data1

string *data2

Object *data3

7

abc

Foo

bar

www.umbc.edu

Example

class Shoe

{

public:

Shoe(const Shoe& shoe);

private:

int *m_size;

string *m_brand;

};

Shoe::Shoe(const Shoe& shoe)

{

m_size = new int(*shoe.m_size);

m_brand = new string(*shoe.m_brand);

}

What’s going on here?

www.umbc.edu

What else?

• Assignment Operator
– Define if using dynamic memory

• Syntax:
– Prototype:

ClassName& operator=(const ClassName& obj);

– Definition:
ClassName& ClassName::operator=(const ClassName& obj)

{

// Deallocate existing memory, if necessary

// Allocate new memory

}

www.umbc.edu

What’s Wrong With This?

Shoe& Shoe::operator=(

 const Shoe& shoe)

{

m_size =

 new int(*shoe.m_size);

m_brand =

 new string(*shoe.m_brand);

}

// In main()

Shoe a(7, "abc");

Shoe b(4, "edf");

b = a;

Shoe a

int *m_size

string *m_brand

7

abc

Shoe b

int *m_size

string *m_brand

4

edf

What happened to the

memory b was pointing

to first???

www.umbc.edu

What’s wrong with this?

void Shoe::operator=(const Shoe& shoe)

{

 *m_size = *shoe.m_size;

 *m_brand = *shoe.m_brand;

}

Shoe a(7, "abc");

Shoe b(4, "edf");

Shoe c(9, "ghi");

c = b = a;

How does the c = b

work, when b = a

returns nothing??

www.umbc.edu

Fixed

Shoe& Shoe::operator=(const Shoe& shoe)

{

 *m_size = *shoe.m_size;

 *m_brand = *shoe.m_brand;

 return *this;

}

Shoe a(7, "abc");

Shoe b(4, "edf");

Shoe c(9, "ghi");

c = b = a;

What’s this?

this – a pointer to

the current object

www.umbc.edu

Self-Assignment

class RentalSystem {

 public:

 // Assume constructor, other methods…

 RentalSystem& operator=(

 const RentalSystem & rs)

 private:

 Customer *m_customers;

 int m_nbrOfCustomers;

};

RentalSystem& RentalSystem::operator=(

 const RentalSystem & rs)

{

 delete [] m_customers;

 m_customers = new Customer[rs.m_nbrOfCustomers];

 for (int i = 0; i < rs.m_nbrOfCustomers; ++i)

 m_customers[i] = rs.m_customers[i];

 return *this;

}

What happens when you do
the following?

RentalSystem r;

// Add customers…

r = r;

www.umbc.edu

Protect from Self-Assignment

RentalSystem& RentalSystem::operator=(

 const RentalSystem & rs)

{

 // If this is NOT the same object as rs

 if (this != &rs)

 {

 delete [] m_customers;

 m_customers = new Customer[rs.m_nbrOfCustomers];

 for (int i = 0; i < rs.m_nbrOfCustomers; ++i)

 m_customers[i] = rs.m_customers[i];

 }

 return *this;

}

www.umbc.edu

Announcements

• Project 3 is out – get started now!

– Due Thursday, March 31st

• Exam 2 is in 2 weeks

– Will focus heavily on:

• Classes

• Inheritance

• Linked Lists

• Dynamic Memory

35

